Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors.
نویسندگان
چکیده
PURPOSE We investigated the effect of endostatin on differentiation, mobilization, and clonogenic potential of circulating endothelial cell (EC) progenitors, and whether the effect of endostatin was improved by continuous infusion (CI) versus bolus administration. EXPERIMENTAL DESIGN Four-color flow cytometry and clonogenic EC cultures were used to study EC progenitors in tumor-free mice, tumor-bearing immunodeficient mice, and immunodeficient mice xenotransplanted with human bone marrow (BM) cells. RESULTS Endostatin significantly reduced the number of circulating EC progenitors in tumor-free BALB/c mice. The effect of endostatin on EC progenitors was enhanced significantly in mice treated with CI drug treatment. When immunodeficient mice xenotransplanted with human BM cells were treated with CI of endostatin we observed a significant decrease in the engraftment and differentiation of human BM-derived EC progenitors. Numbers of circulating EC progenitors increased 7-fold in immunodeficient mice bearing human lymphoma. In this preclinical model, treatment with CI of endostatin inhibited host murine EC progenitor mobilization and human tumor growth. Furthermore, the clonogenic potential of EC progenitors was impaired severely. CONCLUSIONS Endostatin is a potent inhibitor of the mobilization and clonogenic potential of human and murine EC progenitors, and its preclinical activity is increased significantly in CI compared with bolus administration. These observations might be useful in the design of future clinical trials.
منابع مشابه
Application of FITC for detecting the binding of antiangiogenic peptide to HUVECs
Angiogenesis is the generation of new blood vessels from the existing vasculature. The angiogenic programme requires the degradation of the basement membrane, endothelial cell migration and invasion of the extracellular matrix, with endothelial cell proliferation and capillary lumen formation before maturation and stabilization of the new vasculature. Angiogenesis is dependent on a delicate equ...
متن کاملتاثیر Chitosan بر ویژگیهای استئوژنیک سلولهای بنیادی مزانشیمال پالپ دندان شیری
Background and Aims: The exfoliated human deciduous tooth contains multipotent stem cells [Stem Cell from Human Exfoliated Deciduous tooth (SHED)] that identified to be a population of highly proliferative and clonogenic. These cells are capable of differentiating into a variety of cell types including osteoblast/osteocyte, adiopcyte, chondrocyte and neural cell. The aim of this study was to ev...
متن کاملقابلیت تمایز سلولهای بنیادی جنین انسان (Royan H5) به سلولهای همانژیوبلاست در شرایط آزمایشگاهی
Background: Human embryonic stem cells (hESCs) are capable of self-renewal and large-scale expansion. They also have the capacity to differentiate into a variety of cell types including liver, cardiac and neuron cells. However, it is not yet clear whether hESCs can differentiate to hemangioblasts under in-vitro conditions. Hemangioblasts are bipotential progenitors that can generate hematopoiet...
متن کاملAre Stem Cells the next Therapeutic Tool for Heart Repair?
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and Europe. In recent years, the understanding that regenerative processes exist at the level of the myocardium, has placed stem cell research at center stage in cardiology. A stem cell is a cell that has the ability to divide (self replicate) for indefinite periods often throughout the life of the ...
متن کاملI-42: Origins and Differentiation of Somatic Progenitors of The Mammalian Gonad Revealed by Single Cell RNA-Seq
Background - MaterialsAndMethods N;Results N;Conclusion N;
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 9 1 شماره
صفحات -
تاریخ انتشار 2003